
Aerospike REST Client package

This package contains the following files

• swagger.json The swagger specification for the REST API.
• api-doc.html Generated HTML documentation for the API.
• as-rest-client##<VERSION>.war A .war file to be deployed in Tomcat,

or another server accepting .war files. Directions for installation are
provided further down in this document.

• stocks/ A directory containing our demo application. Information on
Demo Application usage is provided at the end of this documentation.

Installation and Configuration

Requirements

• The REST Client requires Java 8.
• The REST Client requires an Aerospike Server to be installed and reachable.

See Configuration for details on specifying the location of this server.

Running on Tomcat

• If not already installed, download and install Tomcat . We recommend
the Core distribution of Tomcat 9, found under the Binary Distributions
section.

This will create a root installation folder which looks something like

./bin/

./conf/

./logs/

./webapps/

• Place the REST Client .war file in your tomcat installation’s webapps
folder.

• For more detailed server configurations, refer to the Documentation for
the version of Tomcat which you are using. For Tomcat 9 these are located
at: https://tomcat.apache.org/tomcat-9.0-doc/introduction.html

• Start tomcat. One way to do this is by running bin/catalina.sh run or
bin/catalina.sh start from the root folder of your Tomcat installation.

Verifying installation

Note: The following steps assume Tomcat’s root is at http://localhost:8080
and the REST Client’s base path is http://localhost:8080/as-rest-client

1

https://tomcat.apache.org
https://tomcat.apache.org/tomcat-9.0-doc/introduction.html

if this is not the case, the provided URLs will need to be modified accordingly.

To test that the rest client is up and running, and connected to the Aerospike
database you can run:

curl http://localhost:8080/as-rest-client/v1/cluster

This will return basic information about the cluster.

Interactive API documentation may be found at http://localhost:8080/
as-rest-client/swagger-ui.html . This will allow you to test out various
commands in your browser.

The Swagger specification, in JSON format, can be found at http://localhost:
8080/as-rest-client/v2/api-docs .

Configuration

By default the REST Client looks for an Aerospike Server available at
localhost:3000 . The following environment variables allow specification of a
different host/port.

• aerospike_restclient_hostname This is the IP address or Hostname of
a single node in the cluster. It defaults to localhost

• aerospike_restclient_port The port to communicate with the
Aerospike cluster over. Defaults to 3000

• aerospike_restclient_hostlist A comma separated list of cluster host-
names and ports. If this is specified, it overrides the previous two environ-
ment variables. The format is described below:

The string format is : hostname1[:tlsname1][:port1],...
* Hostname may also be an IP address in the following formats.
*
* IPv4: xxx.xxx.xxx.xxx
* IPv6: [xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx]
* IPv6: [xxxx::xxxx]
*
* IPv6 addresses must be enclosed by brackets.
* tlsname and port are optional.
*/

The REST Client also allows authentication to an Aerospike Enterprise edi-
tion server with security enabled. The following environment variables are
used to find authentication information. The Aerospike REST Client sup-
ports a single user only. If more than user is necessary, contact sup-
port@aerospike.com

• aerospike_restclient_clientpolicy_user This is the name of a user
registered with the Aerospike database. This variable is only needed when

2

http://localhost:8080/as-rest-client/swagger-ui.html
http://localhost:8080/as-rest-client/swagger-ui.html
http://localhost:8080/as-rest-client/v2/api-docs
http://localhost:8080/as-rest-client/v2/api-docs

the Aerospike cluster is running with security enabled.
• aerospike_restclient_clientpolicy_password This is the password

for the previously specified user. This variable is only needed when the
Aerospike cluster is running with security enabled.

REST Client Data Formats

API Requests which involve sending data can use the JSON, or MessagePack
formats. By default JSON will be assumed. To use MessagePack, set the
Content-Type header to "application/msgpack". Similarly Responses may
be sent in JSON or MessagePack, JSON is the default. To receive MessagePack
formatted data set the Accept header to "application/msgpack".

JSON Use Cases

For many uses JSON is a simpler and completely valid option. It provides
simplicity of use, and familiarity. If basic Key Value operations are being used,
and neither Maps with non string keys, Bytes nor GeoJSON are required, then
JSON will work completely with the Aerospike data model.

Message Pack Use Cases

Message pack is provided as an option because JSON cannot fully represent
certain Aerospike data types. Specifically:

• Aerospike can store arrays of bytes.
• Aerospike maps may have keys which are not strings. e.g {1:2, 3.14:

159}.
• Aerospike stores a GeoJSON type. Which is returned as a MessagePack

extension type.

If you are not handling Maps with non string keys, and not using bytes nor
GeoJSON, then JSON as an interchange format will work for the Rest Client.

MessagePack Format

The MessagePack sent and received by the REST client is almost completely
standard. The one specific detail is that we represent a GeoJSON object using
the MessagePack Extension format type. The extension type value is 23 and the
payload is the string representation of the GeoJSON. This is done to differentiate
a normal string from GeoJSON. For example to write a bin map usable by the
API with a GeoJSON value utilizing Python.

3

https://github.com/msgpack/msgpack/blob/master/spec.md#extension-types

Python 2.7
import msgpack
packed_geojson = msgpack.ExtType(23, "{\"coordinates\": [-122.0, 37.5], \"type\": \"Point\"}")
packed_bins = {u'geo_bin': packed_geojson}
mp_bins = msgpack.packb(packed_bins)

Or with Java

MessageBufferPacker packer = new MessagePack.PackerConfig().newBufferPacker();
String geoString = "{\"coordinates\": [-122.0, 37.5], \"type\": \"Point\"}";
packer.packMapHeader(1);
packer.packString("geo_bin");
packer.packExtensionTypeHeader((byte) 23, geoString.length());
packer.addPayload(geoString.getBytes("UTF-8"));

Bytes are a standard Message Pack type. Here is an example of creating a Bin
Map to be used with the API

Python 2.7
test_bytes = bytearray([1,2,3])
mp_bytes_bins = msgpack.packb({u'my_bytes': test_bytes}, use_bin_type=True)

byte[] testBytes = {1, 2, 3};
MessageBufferPacker packer = new MessagePack.PackerConfig().newBufferPacker();

packer.packMapHeader(1);

packer.packString("my_bytes");

packer.packBinaryHeader(3);
packer.writePayload(testBytes);

byte[] payload = packer.toByteArray();

Demo Application

This demo application is a React app using react-redux components generated
from the rest client’s swagger specification.

The application models an example site which allows users to create personalized
portfolios, and monitor the portfolios’ performance. The application also displays
information about the API requests to the rest client utilized in the application.

Note The provided API call details only include information about request and
response data; to see more information about headers and timing we suggest
utilizing your browser’s developer tools.

4

Usage

Note These instructions assume that the demo is running on a Tomcat server
with a base url of http://localhost:8080. If this is inaccurate, the provided
URLs will need to be updated.

Prerequisites

• Ensure that your Aerospike database has a namespace named test
• Follow the steps for installaing and starting the REST Client
• Make sure that the rest client is available at http://localhost:8080/as-rest-client.

Installation

• Place the stocks folder which came with this package into your Tomcat
Installation’s webapps folder.

• Restart Tomcat

Using the demo

To try out the demo application go to http://localhost:8080/stocks

You should be prompted to upload some stock data. Follow the directions on
the uppload page to acquire this data file. The application will transform this
data into a series of records which will be stored into Aerospike. See Data Model
section for information on the actual structuring of this data.

In the demo application, you may always return to the homepage by clicking on
the trending upward icon in the top left corner of the page.

Model

The input data for this application is a series of daily entries about stock symbols.
Those entries include the date, stock symbol, opening, and closing price.

For each daily entry we create a record structured as follows:

symbol: string # The stock symbol
date: string # The date of the entry
open: float # The opening price for the day
close: float # The closing price for the day

The key of this record is formed by concatenating the stock symbol with the string
representation of the date. For example for the GOOGL entry for 2013-02-08 the
resulting key is GOOGL-2013-02-08.

5

http://localhost:8080/stocks

In addition to these daily entries there is a record for each individual stock. This
record is structured as followed

name: string # The symbol for this stock
dates: [string, ...] # A list of string representations of the daily entries existing for this symbol

There is also a record including a list of stock symbols:

symbols: [string, ...] # A list of all stock symbols.

The Application also includes the concept of a portfolio, which is a collection of
stocks. Each portfolio has a record structured as:

id: string # Unique identifier for the portfolio
name: string # Name of the portfolio, in this app it is always the same as id
stocks: list[string, ...] # A list of stock symbols contained in this portfolio

There is another record containing the most recently created portfolios:

portfolios: [string, ...] A list of recently created portfolios

6

	Aerospike REST Client package
	Installation and Configuration
	Requirements
	Running on Tomcat
	Verifying installation
	Configuration

	REST Client Data Formats
	JSON Use Cases
	Message Pack Use Cases
	MessagePack Format

	Demo Application
	Usage
	Prerequisites
	Installation
	Using the demo
	Model

